

**MRC Cognition** and Brain **Sciences Unit** 

# Using deep learning to improve the intelligibility of a target speaker in noisy multi-talker environments for people with normal hearing and hearing loss

lordanis Thoidis<sup>1</sup>, Tobias Goehring<sup>2</sup>

### Introduction

Speech perception in noisy environments with multiple talkers is a challenging task for listeners with hearing loss and for normal-hearing listeners.

Speech enhancement based on deep learning has shown great potential to improve speech intelligibility in the presence of background noise.

**Realistic acoustic scenes** are inherently dynamic, with alternations and overlap between speakers that vary both in level and in timing.

Aim: Restore ability of a listener to understand a target speaker and ignore others in realistic noise.

**Approach: Real-time Target Speaker Extraction** Extract the voice of a target speaker from a mixture, given a recorded utterance of the target speaker. Evaluate the intelligibility of the target speaker.



Check out the full paper: https://doi.org/10.1121/10.0028007 Thoidis, I., & Goehring, T. (2024). Using deep learning to improve the intelligibility of a target speaker in noisy multi-talker environments for people with normal hearing and hearing loss. JASA, 156(1), 706-724.



<sup>1</sup>Aristotle University of Thessaloniki, Thessaloniki Greece, <sup>2</sup>MRC Cognition and Brain Sciences Unit, University of Cambridge, UK



Condition: 1 speaker Enrollment utterance **Restaurant Noise** [2, 4] seconds [0.5, 1.0] seconds [0.5, 1.0] seconds Condition: 2 speakers Target Speaker silence Enrollment utterance Interference Speaker (0 dB) 5 seconds [2, 4] seconds Restaurant Noise [0.5, 1.0] seconds [0.5, 1.0] seconds Condition: Target Speaker Interference Speaker 1 (0 dB) 3 speakers silence Enrollment utterance Interference Speaker 2 0.5 second: [2, 4] seconds **Restaurant Noise** [0.5, 1.0] seconds [0.5, 1.0] seconds



### Discussion

+10.1 dB ASI-SDR in noisy multi-talker conditions

A single algorithm that generalizes to different speakers, noises, and number of speakers.

Significant speech intelligibility improvements of 17% for people with normal hearing and 31% for people with hearing loss.

## Acknowledgements

Author TG was supported by Career Development Award MR/T03095X/1 from the Medical Research Council UK.

Thanks to Prof. Konstantinos Markou, Anastasia Kypriotou, and Iriana Chrysikou for their help in the recruitment process.