

P471

Feasibility of Distortion-product Oto-acoustic Emission in identification of Cisplatin-induced ototoxicity in adult cancer patients

Introduction

Cisplatin has been shown to cause tinnitus and hearing loss in 23–50% of adults receiving it (WHO,2021). There is a need for exploration of the feasibility of Oto-acoustic Emission in identifying cancer treatment-induced ototoxic hearing loss.

Objective

To check the feasibility of Distortion-product Oto-acoustic Emission (DP-OAE) in ototoxicity assessment by comparing it with the findings of Pure-tone Audiometry (PTA) at different time points during Cisplatin-Based Chemotherapy in adult cancer patients.

Participants

Inclusion

Head Neck Cancer patients within 18-60 years of age

Valid Baseline and at least one subsequent

audiological evaluation

Underwent Cisplatin-chemotherapy between August 2022 to January 2023

Ear-wise Exclusion

Conductive Hearing loss at baseline/ at all other subsequent evaluation

DPOAE-SNR \leq 6 dB SPL and/or amplitude \leq -10 dBSPL at any two consecutive test frequencies between 1.5 to 6 kHz

AC thresholds >50dBHL at any test frequency

Audiological Evaluation

Test Frequencies: PTA (0.25,0.5,1,2,4,8 kHz), DP-OAE (1.5,2,3,4,5,6,7,8 kHz)

J. Sahoo^{1,} S. Thiagarajan²

1 Scientific Officer (Audiology)-Email-jitesh.aslp@gmail.com-Tata Memorial Hospital - Mumbai (India) 2 Professor, Surgical Oncology-Email-drshiva78in@gmail.com-Tata Memorial Hospital - Mumbai (India)

Table 1				Table 2					
Frequencies	T1-T2	Т1-Т2	T1-OTT			SNR			An
(in kHz)				Frequencies	T1-T2	T1-T3	T1-OTT	T1-T2	T1
0.25	.002*	.178**	.000*	(in kHz)					
				4 5	011**	100**	.011**	254**	
0.5	.008*	.021*	.001*	1.5	.011***	.122		.351***	
1	.018*	.003**	.002*	2	.001**	.093**	.001**	.069**	
				3	.126*	.041*	.034*	.033*	
2	.002*	.006**	.001*	4	.007*	.003*	.001*	.002*	.0
				5	.002*	.000**	.000**	.002*	.0
4	.000*	.001**	.001*	6	.000*	.000**	.000**	.000**	.0
				7	.002*	.005**	.000*	.005*	.0
8	.000*	.000**	.000**						
				8	.006**	.047**	.001**	.061*	.0

(Table 2) across time points (*)- Wilcoxon Signed Rank test,(**)- Paired 't' test

		Criteria (i)	Criteria (ii)	Criteria (iii)			
	Agreement(k)	0.778(p=0.000)	0.618(p=0.000)	0.778(p=0.000			
	Sensitivity	84.21%	63.16%	84.21%			
Г2	Specificity	94.12%	100.00%	94.12%			
Г3	Agreement(k)	0.744(p=0.011)	0.421(p=0.087)	1.00(p=0.001)			
	Sensitivity	88.89%	66.67%	100.00%			
	Specificity	100.00%	100.00%	100.00%			
	Agreement(k)	0.772 (p=0.000)	0.576 (p=0.000)	0.772 (p=0.000)			
DT Se	Sensitivity	86.36%	63.64%	86.36%			
Т	Specificity	92.86%	100.00%	92.86%			
Table 3:Agreement, Sensitivity, Specificity of DP-OAE Criteria (i),(ii), (iii) across							
time points							

Abbreviation

"WHO-World Health Organization", "SNR-Signal-to-Noise Ratio", "dB-SPL- Decibel Sound Pressure Level", "kHz-kilo Hertz", "AC-Air Conduction", "ASHA-American Speech and Hearing Association"

Conclusion

DP-OAE has high diagnostic value in identifying Cisplatin-induced ototoxicity in adult cancer patients.

Cisplatin-induced-ototoxic changes in DP-OAE findings correspond to the findings of PTA in adult cancer patients.

DP-OAE can be useful for well-informed treatment decisions, counseling and overall audiological monitoring protocol in adult cancer patients.

Larger Prospective studies warranted to further validate DP-OAE in this study population.

References

World Report on Hearing (2021)-https://www.who.int/publications/i/item/9789240020481

Join, A. S. H. A., & Store, A. S. H. A. (1994). Audiologic Management of Individuals Receiving Cochle-otoxic Drug Therapy

