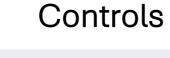
P057

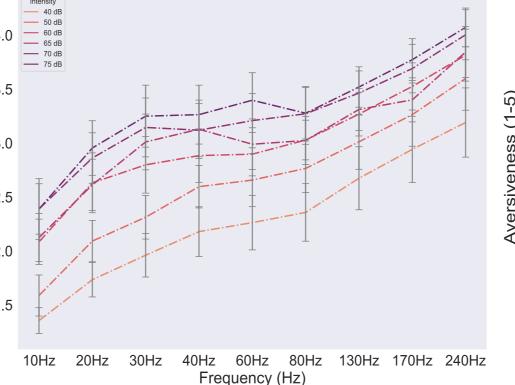
TINNITUS AND HYPERACUSIS

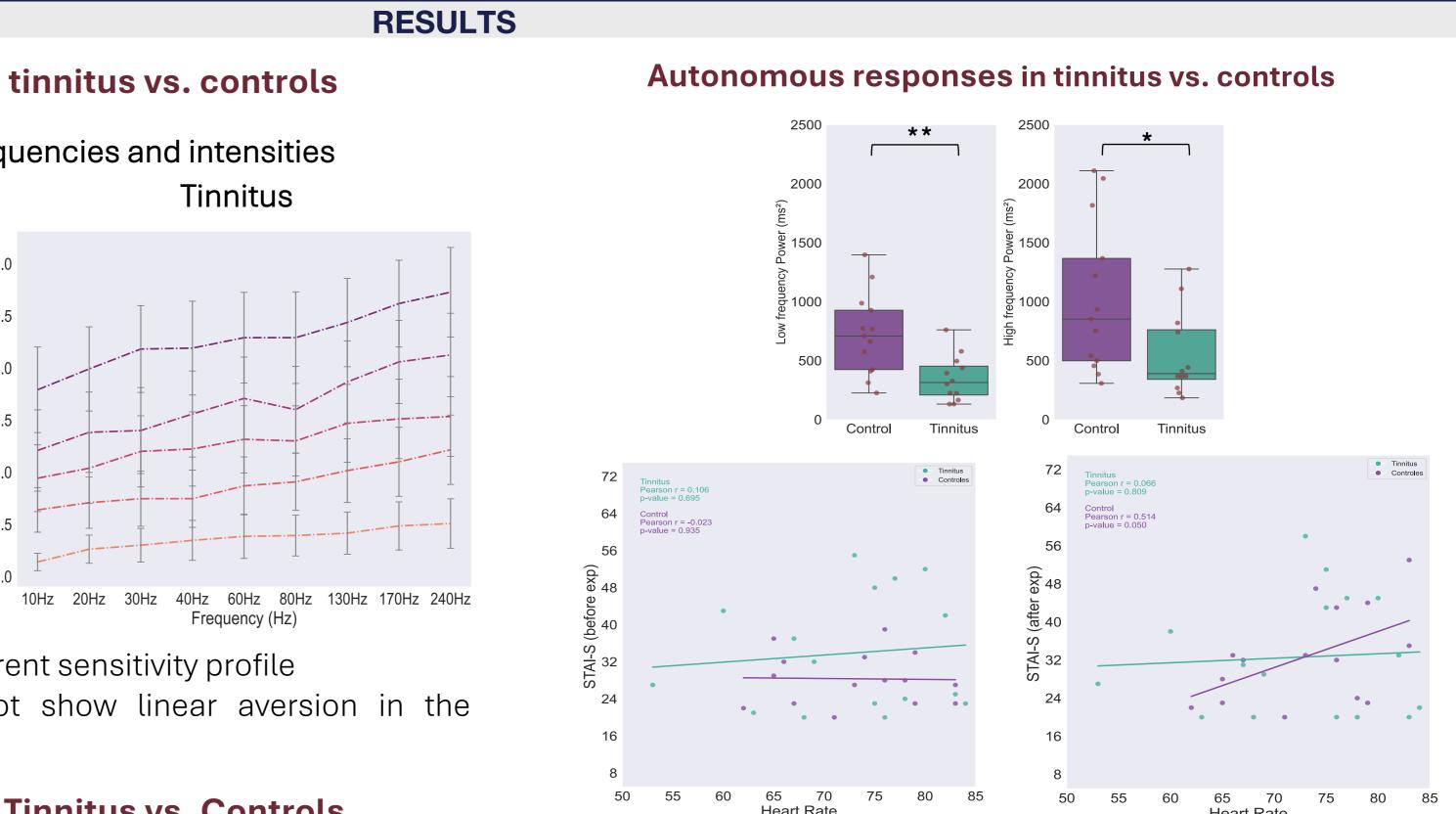
Noémi Gonçalves¹, Robin Guillard, Boris Gourévitch², Luc Arnal¹ noemi.goncalves@pasteur.fr

INTRODUCTION

- In humans, sounds aversiveness follows a non-linear profile and is maximal for amplitude modulated sounds between 30 Hertz(Hz) and 150 Hz, a range known as « roughness ».
- Subjective aversiveness is not only explained by responses in the classical auditory system but target regions situated in deep temporal and limbic structures involved in emotional processing.
- Emotional and behavioral responses to aversive sounds vary significantly among individuals, as sensitivity to acoustic frequencies differs.
- These variations are often influenced by psychoaffective traits, such as anxiety which can alter auditory perception.
- Tinnitus is frequently associated with atypical response or hypersensitivity to sounds.
- We aim to explore the variability in non-linear responses to aversive sounds in both neurotypical individuals and those with tinnitus, focusing on psycho-affective factors like anxiety and autistic traits and physiological responses. It remains unclear whether sound intensity, neuroaffective, and biological factors influence these responses and whether tinnitus could serve as a model for sound hypersensitivity. Intracranial recordings

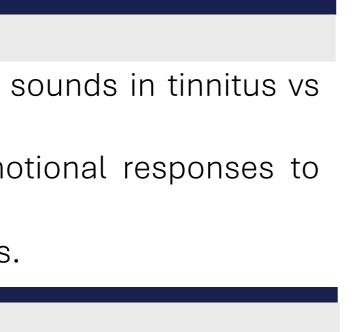

		pitch Intracramal recordings		iys
Unpleasantness (1 → 5)			(Hz) (Hz)	Auditory Cortex
		140 170 200 250 ncy (Hz)	(Hz) (Hz)	notion-related circuits
 Exploring the variability of controles. 	af		l responses to avers	sive sounds in t
 Investigating how psychoa aversive stimuli. Exploring whether individual 			t the processing of ed autonomic respor	
			HODS	
Who ? 15 normal hearing participants 15 somatosensorial tinnitus			halography Time	Heart rate frequency analy
Task Subjective rating of click trains (10 Hz to 240 Hz) at 5 intensities (40, 50, 60, 65, 70 dB)	Ele	ctrocardiogr	Parasympathetic	c C Sym
Questionnaires -STAI-S (before and after exp)/S -Autism Spectrum Quotient		0.15Hz range High-Freque	cy power (LF): freque > parasympathetic and ncy power (HF): freque > parasympathetic me	<mark>d sympathetic</mark> ency activity in t


Characterizing auditory aversive, psychoaffective and autonomic responses in tinnitus

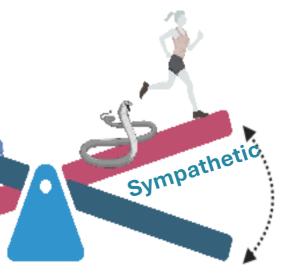

Institut De L'audition¹, Institut Pasteur, Inserm, Univ. Paris Cité, Paris, France, ²Institut De L'audition, Institut Pasteur, Inserm, Univ. Paris Cité, Paris, France, Cnrs France

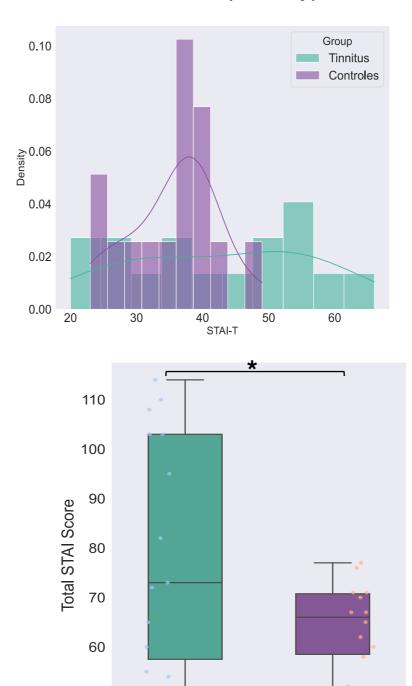
Subjective aversion in tinnitus vs. controls

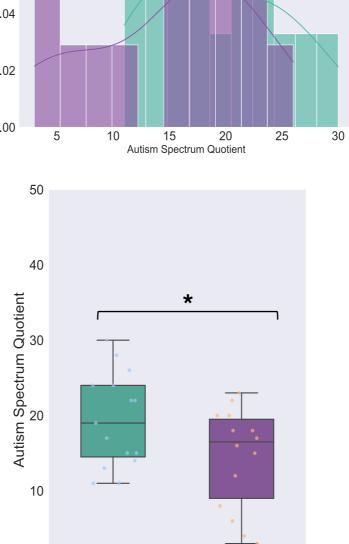
Aversion scores across frequencies and intensities



- Tinnitus and controls exhibit different sensitivity profile
- Unlike controls, tinnitus do not show linear aversion in the roughness range


ory Cortex


Controles


eart rate quency analysis

activity in the 0.04 mpathetic activity in the 0.15 -

50

 Tinnitus exhibit higher anxiety and autistic traits than controls

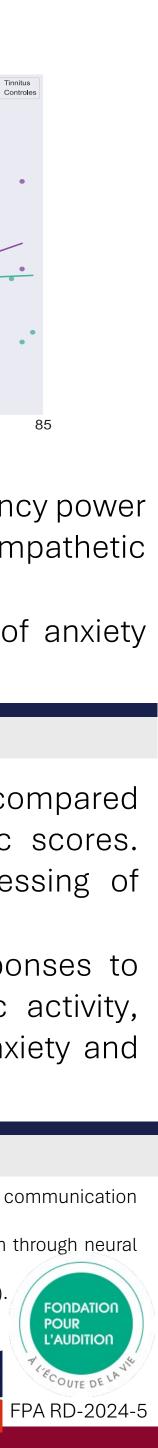
Controles

Psycho-affective traits in Tinnitus vs. Controls

- Tinnitus participants exhibit significantly lower low and high frequency power than controls suggesting reduced sympathetic and parasympathetic responses to sounds.
 - Tinnitus do not present a change in their cardiac activity/level of anxiety compared to control at the end of the experiment.

CONCLUSION

- Individuals with tinnitus exhibit reduced sensitivity to rough sounds as compared to controls. Tinnitus individuals show stronger anxiety and autistic scores. Psycho-affective endogenous traits may impair the aversive processing of emotional responses to sounds in tinnitus.
- Our results also suggest that tinnitus may reduce autonomic responses to sounds due to an imbalance in sympathetic and parasympathetic activity, potentially linked to heightened stress, and neuroaffectives traits (anxiety and autism).


REFERENCES AND SUPPORT

- A., Kleinschmidt, A., Giraud, A.-L. & Poeppel, D. Human screams occupy a privileged niche in the communication soundscape. Curr. Biol. CB 25, 2051–2056 (2015)
- Arnal, L. H., Kleinschmidt, A., Spinelli, L., Giraud, A.-L. & Mégevand, P. The rough sound of salience enhances aversion through neural synchronisation. Nat. Commun. 10, 3671 (2019).

PASTEUR Université PTR PASTEUR

3. Betz, L. T., Muhlberger, A., Langguth, B., & Schecklmann, M.. Stress Reactivity in Chronic Tinnitus. Sci Rep, 7, 41521 (2017).

Paris, France