P-004

SCREENING AND DIAGNOSTIC - SPEECH-IN-NOISE

¹École d'Audioprothèse de Cahors, Cahors, France ²Archean Labs, Montauban, France

Abstract

The "Vocale Rapide dans le Bruit" (VRB) sentence-in-noise test:

- recently developed for the French language [1]
- uses a four-talker babble noise and aims at quantifying the SNR50

To date, reference scores were only collected in a normal-hearing **adult** population [2]:

20-3040 20-4040 10-5040 10-6040

However, a different trend can be expected in children and adolescents, whose speech-in-noise abilities tend to <u>develop</u> as a function of age [3,4]

Objectives

The objective of this study was twofold:

1. collect reference SNR50 in normal-hearing children and adolescents, 2. verify that a similar pattern to that observed by Magimairaj et al. [3] and Holder et al. [4] could also be observed with the VRB test.

Materials & Methods

- Population: 72 normal-hearing participants (39 female) aged from 10 to 20 years (Mean: 14.75 years; SD: 2.92 years).
- Task: repeating five lists of sentences presented in a 4-talker background babble at 8 SNRs (3-dB steps). Speech was presented at 65 dB SPL in a speaker facing the participant, while babble was presented both in the front speaker and in four other speakers.

Performance of children and adolescents on the French VRB (QuickSIN) sentence-in-noise test

Jeanne Desreumaux¹, Lionel Fontan²

The study confirmed the existence of developmental effects for the VRB sentence-in-noise test and provides reference scores for clinical practitioners [5,6]:

			Av	verage resul	ts of the VR	B test as a f	unction of a	ge			
Age (years)	10	11	12	13	14	15	16	17	18	19	20
Age (months)	120	132	144	156	168	180	192	204	216	228	240
SNR ₅₀ (dB SNR)	1.747	1.411	1.075	0.739	0.403	0.067	-0.269	-0.605	-0.941	-1.277	-1.613

[1] Leclercq, F., Renard, C., & Vincent, C. (2018). Speech audiometry in noise: Development of the French-language VRB (vocale rapide dans le bruit) test. European Annals of Otorhinolaryngology, Head and Neck Diseases, 135(5), 315-319. [2] Decambron, M., Leclercq, F., Renard, C., & Vincent, C. (2022). Speech audiometry in noise : SNR Loss per age-group in normal hearing subjects. European Annals of Otorhinolaryngology, Head and Neck Diseases, 139(2), 61-64. [3] Magimairaj, B. M., Nagaraj, N. K., & Benafield, N. J. (2018). Children's Speech Perception in Noise: Evidence for Dissociation From Language and Working Memory. Journal of Speech, Language, and Hearing Research, 61(5), 1294-1305. [4] Holder, J. T. Sheffield, S. W., & Gifford, R. H. (2016). Speech Understanding in Children With Normal Hearing: Sound Field Normative Data for BabyBio, BKB-SIN, and QuickSIN. Otology & Neurotology: Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 37(2), e50-55. [5] Fontan, L., & Desreumaux, J. (2024). Developmental Effects in the "Vocale Rapide dans le Bruit" Speech-in-Noise Identification Test: Reference Performances of Normal-Hearing Children and Adolescents. Journal of Speech, Language, and Hearing Research, 67(5), 1624-1634. [6] Fontan, L., & Desreumaux, J. (2024). Replication Data for: Developmental Effects in the 'Vocale Rapide dans le Bruit' Speech-in-Noise Identification Test: Reference Performances of Normal-Hearing Children and Adolescents (10.1044/2024_JSLHR-23-00467). Harvard Dataverse.

Conclusion

References

Å	19,22
WCA World Congress	September 2024
World Congress of Audiology	September 2024

