P080

Exploring Temporal Mechanisms of Pitch Perception Using the Apical Electrodes of a MED-EL Cochlear Implant

Evelien De Groote¹, Olivier Macherey², John M. Deeks¹ & Robert P. Carlyon¹ 1MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom 2Aix-Marseille Univ., CNRS, Centrale Marseille, LMA, Marseille, France **Auditory Implants**

EXPERIMENT I

EXPERIMENT

 $\overline{}$

EXPERIMENT II

EXPERIMENT

 $=$

INTRODUCTION

Most cochlear-implant (CI) signal-processing strategies are based on Continuous Interleaved Sampling (CIS), which band-pass filters the input signal and extracts its envelope at the filter output, which is then used to modulate the amplitude of a fixed-rate pulse train (*Fig. 1C*). As such, **CIS largely discards temporal fine structure (TFS) information**(1) .

To convey the TFS of incoming signals, MED-EL's **Fine Structure Processing (FSP) strategy**⁽²⁾ detects the positive zero-crossings in the band-pass filter output (*Fig. 1A*), which then triggers a short burst of pulses (*Fig. 1B*) to the 4 most apical electrodes (e1-e4).

Fig. 1. Stimulation with the FSP strategy at the apical electrodes (A-B). CIS is applied to all other electrodes (C). Figure courtesy of Dhanasingh and Hochmair (2021).

For the FSP strategy to work:

I. Temporal pitch perception should be accurate at the apex of the cochlea (Exp. I)

II. The pitch of a harmonically-related multielectrode stimulus should be (Exp. II):

- **Equal to its fundamental frequency (F₀)**
- **Unaffected by inter-channel interactions**

METHOD:

Participants: 8 experienced MED-EL users

Procedure:

- **Place-pitch ranking** of e1 to e4 using the midpoint comparison (MPC) procedure⁽³⁾
- − **Rate-pitch ranking** of 8 pulse rates (80- 981 pps) using the MPC procedure for: (i) single-electrode apical (e1) stimulation
	- (ii) single-electrode mid (e8) stimulation (iii) simultaneous multi-electrode apical (e1-e4) stimulation
- − Neural health measured at e1 and e8 by the **polarity effect (PE)** = detection threshold difference between 99-pps triphasic pulses with cathodic (TP-C) vs. anodic (TP-A) dominant polarity(5)

METHOD:

Participants: 8 experienced MED-EL users

Procedure: **Rate-pitch ranking** of 11 multielectrode stimuli (*Fig. 3*), presented to e1-e4 and including a simple approximation of the FSP strategy ([1234]xSD, shown by box), using the MPC procedure

*Fig. 3. Visualisation of 10 ms of the 11 multi-electrode stimuli used in Experiment II. [numbers]*100 refer to the rate that was applied to e1-e4. SD = 100-µs Short Delay; LD = maximised Long Delay; RD = Reversed Delay.*

RESULTS:

- − 4/8 patients demonstrated apical (e1/e2) place-pitch confusions
- The upper limit of temporal pitch did not differ between the 3 stimulation conditions (*Fig. 2*)
- − Rate-pitch ranking was not correlated to place-pitch ranking or the PE

ranks and SD as a function of pulse rate and stimulation condition. Coloured shapes at the top of the graph indicate the upper limit estimates.

RESULTS:

- − The pitches of harmonically-related mixed-rate stimuli were ranked between 100 and 200 pps (*Fig. 4*)
- − Maximising the inter-electrode delay (SD vs. LD) increased the pitch of both same- and mixed-rate stimuli
- Stimulation order (SD vs. RD) did not affect the pitch rank

DISCUSSION

I. There is no justification for conveying TFS cues specifically or exclusively to the apical electrodes in order to increase the upper limit of temporal pitch - in line with earlier studies⁽⁵⁾.

II. There is no evidence that presenting multiple harmonically-related rates to different apical electrodes elicits a pitch percept at F₀. In addition, the pitch was affected by between-channel interactions.

Additional findings (not shown): (i) the PE correlated with the average threshold and (ii) the PE did not differ between apical and midarray stimulation, contrary to some model predictions⁽⁶⁾.

Practical implications: Strategies that deliver a different temporal code to each electrode are likely to elicit a complex pattern of auditorynerve responses as a result of spread of excitation, which might additionally vary with frequency-dependent phase distortions (e.g., due to reverberation (7)).

- (1) Wouters, J., et al. (2015). IEEE Signal Process. Mag., 32(2), 67-80 (2) Dhanasingh, A., & Hochmair, I. (2021). Acta Otolaryngol., 141(Su
- Dhanasingh, A., & Hochmair, I. (2021). Acta Otolaryngol., 141(Sup 1), 106-134
- (3) Long, C. J., et al. (2005). Ear Hear., 26(3), 251-262
- (4) Mesnildrey, Q., et al. (2020). JARO, 21, 89-104
- (5) Kong, Y. Y., & Carlyon, R. P. (2010). JASA, 127(5), 3114-3123
- Kalkman, R. K., et al. (2014). Ear Hear. 315, 10-24 (7) Sayles, M., & Winter, I. M. (2008). Neuron 58(5), 789-801

This research was funded by a Wellcome Trust Collaborative Award in Science RG 91976 and a Medical Research Council core Award G116768 to R.P.C, and by a grant from the Agence Nationale de la Recherche ANR-11-PDOC-0022 to O.M.